Presented by: Melanie Dickie
Anthropogenic habitat alteration via land conversion directly reduces habitat availability and disrupts ecological processes. Western Canada’s boreal forest has undergone rapid landscape change as a result of human expansion and resource development. Resulting habitat loss and alteration is hypothesized to be the ultimate cause of boreal woodland caribou declines, one of the most high-profile species at risk in Canada’s boreal forest. While a variety of recovery actions are being employed to recover caribou populations, habitat restoration has been identified as a necessary and important management tool. Restoration is required to restore ecological processes to address the ultimate cause of caribou declines, habitat loss and alteration, as well as the proximate cause, unsustainable predation rates as a result of human-mediated changes to predator-prey dynamics. While the importance of conducting habitat restoration is clear, the effectiveness of restoration treatments is not well understood. Given the spatial extent of these disturbances and the cost of habitat restoration treatments, it behooves researchers and managers to predict and monitor the effectiveness of restoration treatments. Here we explore the predicted success of restoration for recovering caribou populations using predator-prey simulations, and empirically test the effectiveness of restoration treatments. We present a multiple-lines-of-evidence approach for understanding caribou, moose, wolf and bear response to habitat restoration treatments aimed to restore the functional and ecological processes in northeastern Alberta. Understanding behavioral and population-level responses to restoration treatments is necessary to ensure successful recovery and adaptive management.